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The communication cost of algorithms (also known as I/O-complexity) is shown to be closely related to the
expansion properties of the corresponding computation graphs. We demonstrate this on Strassen’s and other
fast matrix multiplication algorithms, and obtain the first lower bounds on their communication costs.

In the sequential case, where the processor has a fast memory of size M , too small to store three n-by-n
matrices, the lower bound on the number of words moved between fast and slow memory is, for a large class
of matrix multiplication algorithms, Ω
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M

)ω0
·M

)
, where ω0 is the exponent in the arithmetic count

(e.g., ω0 = lg 7 for Strassen, and ω0 = 3 for conventional matrix multiplication). With p parallel processors,
each with fast memory of size M , the lower bound is asymptotically lower by a factor of p. These bounds are
attainable both for sequential and for parallel algorithms and hence optimal.
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1. INTRODUCTION
The communication, or I/O complexity, of an algorithm (e.g., transferring data between
the CPU and memory devices, or between parallel processors) often costs significantly
more time than its arithmetic. It is therefore of interest (1) to obtain lower bounds
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for the communication needed, and (2) to design and implement algorithms attaining
these lower bounds. Communication also requires much more energy than arithmetic,
and saving energy may be even more important than saving time.

Communication time per data unit varies by orders of magnitude, from order of
10−9 seconds for an L1 cache reference, to order of 10−2 seconds for disk access. The
variation can be even more dramatic when communication occurs over networks or
the internet. While Moore’s Law predicts an exponential increase of hardware density
in general, the annual improvement rate of time-per-arithmetic-operation has, over
the years, consistently exceeded that of time-per-word read/write [Graham et al. 2004;
Fuller and Millett 2011]. The fraction of running time spent on communication is thus
expected to increase further.

1.1. Communication model
We model communication costs of sequential and parallel architecture as follows. In
the sequential case, with two levels of memory hierarchy (fast and slow), communi-
cation means reading data items (words) from slow memory (of unbounded size), to
fast memory (of size M ) and writing data from fast memory to slow memory1. Words
that are stored contiguously in slow memory can be read or written in a bundle which
we will call a message. We assume that a message of n words can be communicated
between fast and slow memory in time α+βn where α is the latency (seconds per mes-
sage) and β is the inverse bandwidth (seconds per word). We define the bandwidth cost
of an algorithm to be the total number of words communicated and the latency cost of
an algorithm to be the total number of messages communicated. We assume that the
input matrices initially reside in slow memory, and are too large to fit in the smaller
fast memory. Our goal then is to minimize both bandwidth and latency costs.2

In the parallel case, we assume p processors, each with memory of size M (or with
larger memory size, as long as we never use more than M in each processor). We are
interested in the communication among the processors. As in the sequential case, we
assume that a message of n words can be communicated in time α + βn. This cost
includes the time required to “pack” non-contiguous words into a single message, if
necessary. We assume that the input is initially evenly distributed among all proces-
sors, so M · p is at least as large as the input. Again, the bandwidth cost and latency
cost are the word and message counts respectively. However, we count the number of
words and messages communicated along the critical path as defined in [Yang and
Miller 1988] (i.e., two words that are communicated simultaneously are counted only
once), as this metric is closely related to the total running time of the algorithm. As
before, our goal is to minimize the number of words and messages communicated.

We assume that (1) the cost per flop is the same on each processor and the commu-
nication costs (α and β) are the same between each pair of processors (this assump-
tion is for ease of presentation and can be dropped, using the approach of [Ballard
et al. 2011b]; see Section 6.2), (2) all communication is “blocking”: a processor can
send/receive a single message at a time, and cannot communicate and compute a flop
simultaneously (the latter assumption can be dropped, affecting the running time by
a factor of two at most), and (3) there is no communication resource contention among
processors. For example, if processor 0 sends a message of size n to processor 1 at time

1See [Ballard et al. 2010] for definition of a model with memory hierarchy, and a reduction from the two-level
model. All bounds in this paper thus apply to the model with memory hierarchy as well.
2The sequential communication model used here is sometimes called the two-level I/O model or disk access
machine (DAM) model (see [Aggarwal and Vitter 1988; Bender et al. 2010; Chowdhury and Ramachandran
2006]). Our bandwidth cost model follows that of [Hong and Kung 1981] and [Irony et al. 2004] in that it
assumes the block-transfer size is one word of data (B = 1 in the common notation). However, our model
allows message sizes to vary from one word up to the maximum number of words that can fit in fast memory.
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0, and processor 2 sends a message of size n to processor 3 also at time 0, the cost
along the critical path is α + βn. However, if both processor 0 and processor 1 try to
send a message to processor 2 at the same time, the cost along the critical path will be
the sum of the costs of each message. Note that assuming all-to-all connectivity among
processors yields valid lower bounds for all distributed computers, even though real
machines have more restrictive networks.

1.2. The Computation Graph and Implementations of an Algorithm
The computation performed by an algorithm on a given input can be modeled (see
Section 3) as a computation directed acyclic graph (CDAG) : We have a vertex for each
input / intermediate / output argument, and edges according to direct dependencies
(e.g., for the binary arithmetic operation x := y + z we have a directed edge from vy
to vx and from vz to vx, where the vertices vx, vy, vz stand for the arguments x, y, z,
respectively).

An implementation (or scheduling) of a CDAG determines, in the parallel model,
which arithmetic operations are performed by which of the p processors. This corre-
sponds to partitioning the CDAG into p parts. Edges crossing between the various
parts correspond to arguments that are in the possession of one processor, but are
needed by another processor, therefore relate to communication. In the sequential
model, an implementation determines the order of the arithmetic operations, in a way
that respects the partial ordering of the CDAG (see Section 3 relating this to commu-
nication cost).

Implementations of a CDAG may vary greatly in their communication costs. The
I/O-complexity of an algorithm is the minimum bandwidth cost of the algorithm as
a function of the input size, over all possible implementations of the CDAG corre-
sponding to the given input size. The I/O-complexity of a problem is defined to be the
minimum I/O-complexity of all algorithms for this problem. A lower bound of the I/O-
complexity of an algorithm is therefore a result of the form: any implementation of
algorithm Alg and input size n requires at least X(n) communication. An upper bound
is of the form: there is an implementation for algorithm Alg and input size n that re-
quires at most X(n) communication. We detail below some of the I/O-complexity lower
and upper bounds of specific algorithms, or a class of algorithms. I/O-complexity lower
bounds for a problem are claims of the form: any algorithm for a problem P and input
size n requires at least X(n) communication. These are much harder to find (but see
for example [Demmel et al. 2012]).

The lower bounds in this paper are for all implementations for a family of algorithms:
Strassen-like fast matrix multiplication. Generally speaking, a Strassen-like algorithm
utilizes an algorithm for multiplying two constant-size matrices in order to recursively
multiply matrices of arbitrary size; see Section 5 for precise definition and technical
assumptions.

1.3. Previous Work on Classical Algorithms
Consider the classical Θ(n3) algorithm for matrix multiplication3. While its naı̈ve
implementations are communication inefficient, communication-minimizing sequen-
tial and parallel variants of this algorithm were constructed, and proved optimal, by
matching lower bounds [Cannon 1969; Hong and Kung 1981; Frigo et al. 1999; Irony
et al. 2004].

In [Ballard et al. 2010; Ballard et al. 2011d] we generalize the results of [Hong
and Kung 1981; Irony et al. 2004] regarding matrix multiplication, to obtain new

3Here we mean any algorithm that computes using the n3 scalar multiplications, whether this is done
recursively, iteratively, block-wise or any other way.
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I/O-complexity lower bounds for a much wider variety of algorithms. This includes all
“classical” algorithms for LU factorization, Cholesky factorization, and LDLT factor-
ization, as well as many algorithms for the QR factorization, eigenvalue decomposi-
tions, and the singular value decomposition (SVD). Thus we essentially cover all di-
rect methods of linear algebra. The results hold for dense matrix algorithms (most
of them have O(n3) complexity), as well as sparse matrix algorithms (whose running
time depends on the number of non-zero elements, and their locations), and to certain
graph-theoretic problems4. They apply to sequential and parallel algorithms, and most
of our bounds are shown to be tight.

Communication cost optimal algorithms for square classical matrix multiplication
are well known. Algorithms for dense LU, Cholesky, QR, eigenvalue problems and the
SVD with optimal communication costs are more recent. These include [Gustavson
1997; Toledo 1997; Elmroth and Gustavson 1998; Frigo et al. 1999; Ahmed and Pingali
2000; Frens and Wise 2003; Demmel et al. 2012; Grigori et al. 2008; Grigori et al. 2011;
Ballard et al. 2009; David et al. 2010; Ballard et al. 2011a] and have not yet all been
implemented and made available as part of standard libraries like LAPACK [Anderson
et al. 1992] and ScaLAPACK [Blackford et al. 1997]. See [Ballard et al. 2011d] for more
details.

In [Ballard et al. 2010; Ballard et al. 2011d] we use the approach of [Irony et al.
2004], based on the Loomis-Whitney geometric theorem [Loomis and Whitney 1949;
Burago and Zalgaller 1988], by embedding segments of the computation process into
a three-dimensional cube. This approach, however, is not suitable when distributivity
is used, as is the case in Strassen [Strassen 1969] and other fast matrix multiplication
algorithms (e.g., [Coppersmith and Winograd 1990; Cohn et al. 2005]).

While the I/O-complexity of classic matrix multiplication and algorithms with simi-
lar structure is quite well understood, this is not the case for algorithms of more com-
plex structure. The problem of minimizing communication in parallel classical matrix
multiplication was addressed in [Cannon 1969] almost simultaneously with the publi-
cation of Strassen’s fast matrix multiplication algorithm [Strassen 1969]. Moreover, an
I/O-complexity lower bound for the classical matrix multiplication algorithm has been
known for three decades [Hong and Kung 1981]. Nevertheless, the I/O-complexity of
Strassen’s fast matrix multiplication and similar algorithms has not been resolved.

In this paper we obtain first communication cost lower bounds for Strassen’s and
other fast matrix multiplication algorithms, in the sequential and parallel models.
These bounds are attainable both for sequential (see below) and for parallel algorithms
(by our recent work [Ballard et al. 2012b]) and so optimal.

1.4. Communication Costs of Fast Matrix Multiplication
1.4.1. Upper bounds. The I/O-complexity IO(n,M) of Strassen’s algorithm (see Algo-

rithm 1, Appendix A), applied to n-by-n matrices on a machine with fast memory of
size M , can be bounded above as follows: the recursion consists of computing seven
subproblems and performing matrix additions, where the base case occurs when the
problem fits entirely in the fast memory (3n2 ≤ M ). In the base case, read the
two input sub-matrices into the fast memory, perform the matrix multiplication in-
side the fast memory, and write the result into the slow memory5. We thus have

4See [Michael et al. 2002] for bounds on graph-related problems, and our [Ballard et al. 2011d] for a detailed
list of previously known and recently designed sequential and parallel algorithms that attain the above
mentioned lower bounds.
5Here we assume that the recursion tree is traversed in the usual depth-first order.
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IO(n,M) ≤ 7 · IO
(
n
2 ,M

)
+O(n2) and IO

(√
M
3 ,M

)
= O(M). Thus

IO(n,M) = O

((
n√
M

)lg 7

·M

)
.

Note that this matches the lower bound stated in Theorem 1.1 below. In order to attain
the latency lower bound as well, a careful choice of matrix layout is necessary. Morton-
ordering (also known as bit-interleaved layout) enables the recursive algorithm to at-
tain the latency lower bound; see [Frigo et al. 1999; Wise 2000] for more details.

The recent parallel algorithm for Strassen’s matrix multiplication [Ballard et al.
2012b] has I/O-complexity

IO(n, p,M) = O

((
n√
M

)lg 7

· M
p

+
n2

p
2

lg 7

)
where p is the number of processors and M is the size of the local memory. Note that
this matches the lower bounds of Corollary 1.2 and Theorem 1.3 below. The latency
lower bound is attained to within a logarithmic factor (in p). A similar optimal algo-
rithm for Strassen’s matrix multiplication in the BSP model is presented in [McColl
and Tiskin 1999].

1.4.2. Lower bounds. In this paper, we obtain a tight lower bound:

THEOREM 1.1. (MAIN THEOREM) Consider Strassen’s algorithm implemented on a
sequential machine with fast memory of size M . Then for M ≤ n2, and assuming no
recomputation6, the I/O-complexity of Strassen’s algorithm is

IO(n,M) = Ω

((
n√
M

)lg 7

·M

)
.

It holds for any implementation and any known variant of Strassen’s algorithm7 that
is based on performing 2 × 2 matrix multiplication with 7 scalar multiplications. This
includes Winograd’s O(nlg 7) variant that uses 15 additions instead of 18, which is
the most used fast matrix multiplication algorithm in practice [Douglas et al. 1994;
Huss-Lederman et al. 1996; Desprez and Suter 2004]. Note that Theorem 1.1 does
not hold for values of M which are so large that the entire problem can fit into fast
memory simultaneously. In the case that the input matrices start in fast memory and
the output matrix finishes in fast memory, no communication is necessary.

For parallel algorithms, using a reduction from the sequential to the parallel model
(see e.g., [Irony et al. 2004] or our [Ballard et al. 2011d]) this yields:

COROLLARY 1.2. Consider Strassen’s algorithm implemented on a parallel ma-
chine with p processors, each with a local memory of size M . There exists a constant
c such that for M ≤ c · n2

p2/ lg 7 , and assuming no recomputation, the I/O-complexity of

6We assume no recomputation throughout the paper. By this we mean each vertex of the CDAG is computed
exactly once. If recomputation is allowed then a write operation, for example, may be replaced by recomput-
ing the flop when its output is needed, making the lower bound harder to prove in some cases, and incorrect
in others. See Section 3.2 and the R2/D2 discussion in [Ballard et al. 2011d].
7This lower bound for the sequential case seems to contradict the upper bound from [Frigo et al. 1999;
Blelloch et al. 2008], due to a miscalculation in the former which is propagated in the latter ([Leiserson
2008]).
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Strassen’s algorithm is

IO(n, p,M) = Ω

((
n√
M

)lg 7

· M
p

)
.

While Corollary 1.2 does not hold for all sizes of local memory (relative to the prob-
lem size and number of processors), the following memory-independent lower bound
can be proved using similar techniques [Ballard et al. 2012a] and holds for all local
memory sizes, though it requires separate assumptions.

THEOREM 1.3 ([BALLARD ET AL. 2012A]). Suppose a parallel algorithm perform-
ing Strassen’s matrix multiplication load balances the computation in an asymptotic
sense and performs no redundant computation. Then, for sufficiently large p,

IO(n, p) = Ω

(
n2

p2/ lg 7

)
.

Note that the bound in Corollary 1.2 dominates the one in Theorem 1.3 for M =

O
(

n2

p2/ lg 7

)
. See Section 5.3 for further discussion.

We can extend these bounds to a wider class of all Strassen-like matrix multipli-
cation algorithms. Note that this class does not include all fast matrix multiplication
algorithms or the classical algorithm (see Section 5.1 for definition of Strassen-like
algorithms, and in particular the technical assumption in Section 5.1.1). Let Alg be
any Strassen-like matrix multiplication algorithm that runs in time O(nω0) for some
2 < ω0 < 3. Then, using the same arguments as for Strassen’s algorithm, the I/O-
complexity of Alg can be shown to be IO(n,M) = O

((
n√
M

)ω0

·M
)

. We obtain a match-
ing lower bound:

THEOREM 1.4. Consider a recursive Strassen-like fast matrix multiplication algo-
rithm with O(nω0) arithmetic operations implemented on a sequential machine with
fast memory of size M . There exists a constant c such that for M ≤ c · n2, and assuming
no recomputation, the I/O-complexity of the Strassen-like algorithm is

IO(n,M) = Ω

((
n√
M

)ω0

·M
)
.

Note that for the cubic recursive algorithm for matrix multiplication, ω0 = lg 8 = 3,

and the above formula is IO(n,M) = Ω

((
n√
M

)3
·M
)

= Ω
(
n3
√
M

)
and identifies with

the lower bounds of [Hong and Kung 1981] and [Irony et al. 2004]. While the lower
bounds for ω0 = 3 and for ω0 < 3 have the same form, the proofs are completely
different, and it is not clear whether our approach can be used to prove their lower
bounds and vice versa.

COROLLARY 1.5. Consider a Strassen-like algorithm implemented on a parallel
machine with p processors, each with a local memory of size M . There exists a constant
c such that for M ≤ c · n2

p2/ω0
, and assuming no recomputation, the I/O-complexity of the

Strassen-like algorithm is

IO(n, p,M) = Ω

((
n√
M

)ω0

· M
p

)
.

Theorem 1.3 also extends to Strassen-like algorithms [Ballard et al. 2012a], though
we omit the statement of the more general theorem here. Both of the bounds are
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attained by the generalizations of the parallel Strassen algorithm in [Ballard et al.
2012b].

To obtain the lower bounds for latency costs we divide the bandwidth costs by the
maximal message length, M . This holds for all the lower bounds here, both in the
sequential and parallel models.

1.5. The Expansion Approach
The proof of the main theorem is based on estimating the edge expansion of the com-
putation directed acyclic graph (CDAG) of an algorithm. The I/O-complexity is shown
to be closely related to the edge expansion properties of this graph. As the graph has a
recursive structure, the expansion can be analyzed directly (combinatorially, similarly
to what is done in [Mihail 1989; Alon et al. 2008; Koucky et al. 2010]) or by spectral
analysis (in the spirit of what was done for the Zig-Zag expanders [Reingold et al.
2002]). There is, however, a new technical challenge. The replacement product and the
Zig-Zag product act similarly on all vertices. This is not what happens in our case:
multiplication and addition vertices behave differently.

The expansion approach is similar to the one taken by Hong and Kung [Hong and
Kung 1981] (see also [Savage 1995]). They use the red-blue pebble game to obtain tight
lower bounds on the I/O-complexity of many algorithms, including classical Θ(n3) ma-
trix multiplication, matrix-vector multiplication, and FFT. The proof is obtained by
considering other properties of the CDAG (using dominator sets and minimal sets).
While we assume no recomputation occurs, Hong and Kung’s approach does allow re-
computation. Comparing our approach to that of [Irony et al. 2004], one can view their
approach (also used in [Ballard et al. 2011d; Ballard et al. 2012a]) as an edge expan-
sion assertion on the CDAGs of the corresponding classical algorithms.

The study of expansion properties of a CDAG was also suggested as one of the main
motivations of Lev and Valiant [Lev and Valiant 1983] in their work on superconcen-
trators. They point out many papers proving that classes of algorithms computing DFT,
matrix inversion and other problems all have to have CDAGs with good expansion
properties, thus providing lower bounds on the number of the arithmetic operations
required.

Other papers study connections between bounded space computation, and combina-
torial expansion-related properties of the corresponding CDAG (see e.g., [Savage 1994;
Bilardi and Preparata 1999; Bilardi et al. 2000] and references therein).

1.6. Paper organization
Section 2 contains preliminaries on the notions of graph expansion. In Section 3 we
state and prove the connection between I/O-complexity and the expansion properties
of the computation graph. In Section 4 we analyze the expansion of the CDAG of
Strassen’s algorithm. We discuss the generalization of the bounds to other algorithms
in Section 5, and present conclusions and open problems in Section 6.

2. PRELIMINARIES
Edge expansion. The edge expansion h(G) of a d-regular undirected graph G = (V,E)

is:

h(G) ≡ min
U⊆V,|U |≤|V |/2

|E(U, V \ U)|
d · |U |

(1)

where E(A,B) ≡ EG(A,B) is the set of edges connecting the vertex sets A and B. We
omit the subscript G when the context makes it clear.

When G is not regular. Note that CDAGs are typically not regular. If a graph G = (V,E)
is not regular but has a bounded maximal degree d, then we can add (< d) loops to
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vertices of degree < d, obtaining a regular graph G′. We use the convention that a loop
adds 1 to the degree of a vertex. Note that for any S ⊆ V , we have |EG(S, V \ S)| =
|EG′(S, V \ S)|, as none of the added loops contributes to the edge expansion of G′.

Expansion of small sets. For many graphs, small sets expand better than larger sets.
Let hs(G) denote the edge expansion for sets of size at most s in G:

hs(G) ≡ min
U⊆V,|U |≤s

|E(U, V \ U)|
d · |U |

. (2)

For many interesting graph families, hs(G) does not depend on |V (G)| when s is fixed,
although it may decrease when s increases. One way of bounding hs(G) is by decom-
posing G into small subgraphs of large edge expansion.

LEMMA 2.1. Let G = (V,E) be a d-regular graph that can be decomposed into edge-
disjoint (but not necessarily vertex-disjoint) copies of a graph G′ = (V ′, E′) with maxi-
mum degree d′. Then the edge expansion of G for sets of size at most |V ′|/2 is h(G′) · d

′

d ,
namely

h |V ′|
2

(G) ≡ min
U⊆V,|U |≤|V ′|/2

|EG(U, V \ U)|
d · |U |

≥ h(G′) · d
′

d
.

Note that if G′ is not regular then h(G′) is not well-defined. We abuse this notation to
mean the edge expansion of G′ made regular by adding at most d′ loops to each vertex.
For proving this lemma, recall the definition of graph decomposition:

Definition 2.2 (Graph decomposition). We say that the set of graphs {G′i =
(Vi, Ei)}i∈[l] is an edge-disjoint decomposition of G = (V,E) if V =

⋃
i Vi and E =

⊎
iEi.

PROOF OF LEMMA 2.1. Let U ⊆ V be of size U ≤ |V ′|/2. Let {G′i = (Vi, Ei)}i∈[l] be
an edge-disjoint decomposition ofG, where everyG′i is isomorphic toG′. Let Ui = Vi∩U .
Then

|EG(U, V \ U)| =
∑
i∈[l]

|EG′i(Ui, Vi \ Ui)| ≥
∑
i∈[l]

h(G′i) · d′ · |Ui|

= h(G′) · d′ ·
∑
i∈[l]

|Ui| ≥ h(G′) · d′ · |U | .

Therefore |EG(U,V \U)|
d·|U | ≥ h(G′) · d

′

d .

3. I/O-COMPLEXITY AND EDGE EXPANSION
In this section we recall the notion of the computation graph of an algorithm, then
show how a partition argument connects the expansion properties of the computation
graph and the I/O-complexity of the algorithm. A similar partition argument already
appeared in [Irony et al. 2004], and then in our [Ballard et al. 2011d]. In both cases it
is used to relate I/O-complexity to the Loomis-Whitney geometric bound [Loomis and
Whitney 1949], which can be viewed, in this context, as an expansion guarantee for
the corresponding graphs.

3.1. The computation graph
For a given algorithm, we consider the CDAG G = (V,E), where there is a vertex for
each arithmetic operation (AO) performed, and for every input element. G contains a
directed edge (u, v), if the output operand of the AO corresponding to u (or the input
element corresponding to u), is an input operand to the AO corresponding to v. The
in-degree of any vertex of G is, therefore, at most 2 (as the arithmetic operations are
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binary). The out-degree is, in general, unbounded8, i.e., it may be a function of |V |.
We next show how an expansion analysis of this graph can be used to obtain the I/O-
complexity lower bound for the corresponding algorithm.

3.2. The partition argument
Let M be the size of the fast memory. Let O be any total ordering of the vertices that
respects the partial ordering of the CDAG G, i.e., all the edges are directed upwards
in the total order. This total ordering can be thought of as the actual order in which
the computations are performed. Let P be any partition of V into segments S1, S2, ...,
so that a segment Si ∈ P is a subset of the vertices that are contiguous in the total
ordering O.

Let RS and WS be the set of read and write operands, respectively (see Figure 1).
Namely, RS is the set of vertices outside S that have an edge going into S, and WS

is the set of vertices in S that have an edge going outside of S. Then the total I/O-
complexity due to reads of AOs in S is at least |RS | −M , as at most M of the needed
|RS | operands are already in fast memory when the execution of the segment’s AOs
starts. Similarly, S causes at least |WS | −M actual write operations, as at most M of
the operands needed by other segments are left in the fast memory when the execution
of the segment’s AOs ends. The total I/O-complexity is therefore bounded below by9

IO ≥ max
P

∑
S∈P

(|RS |+ |WS | − 2M) . (3)

S

RS

WS

V

Fig. 1. A subset (segment) S and its corresponding read operands RS , and write operands WS .

8As the lower bounds are derived for the bounded out-degree case, we will show how to convert the corre-
sponding CDAG to obtain constant out-degree, without affecting the I/O-complexity too much.
9One can think of this as a game: the first player orders the vertices. The second player partitions them into
contiguous segments. The objective of the first player (e.g., a good programmer) is to order the vertices so
that any consecutive partitioning by the second player leads to a small communication count.
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A:10 Ballard, Demmel, Holtz, and Schwartz

3.3. Edge expansion and I/O-complexity
Consider a segment S and its read and write operands RS and WS (see Figure 1). If
the graph G containing S has h(G) edge expansion10, maximum degree d and at least
2|S| vertices, then (using the definition of h(G)), we have

CLAIM 3.1. |RS |+ |WS | ≥ h(G) · |S| .

PROOF. We have |E(S, V \S)| ≥ h(G)·d·|S|. SinceE(S, V \S) = E(RS , S)]E(WS , V \S)
we have |E(S, V \ S)| = |E(RS , S)| + |E(WS , V \ S)| ≤ d · |RS | + d · |WS | where the last
inequality is by the degree bound. The claim follows.

Combining this with (3) and choosing to partition V into |V |/s segments of equal size
s, we obtain: IO ≥ maxs

|V |
s · (h(G) · s− 2M) = Ω (|V | · h(G)). In many cases h(G) is too

small to attain the desired I/O-complexity lower bound. Typically, h(G) is a decreasing
function in |V (G)|, namely the edge expansion deteriorates with the increase of the
input size and with the running time of the corresponding algorithm. This is the case
with matrix multiplication algorithms: the cubic, as well as the Strassen and Strassen-
like algorithms. In such cases, it is better to consider the expansion of G on small sets
only: IO ≥ maxs

|V |
s · (hs(G) · s− 2M). Choosing the minimal s so that

hs(G) · s ≥ 3M (4)

we obtain

IO ≥ |V |
s
·M . (5)

The existence of a value s ≤ |V |2 that satisfies condition (4) is not always guaranteed. In
the next section we confirm the existence of such s for Strassen’s CDAG, for sufficiently
large |V |. Indeed this is the interesting case, as otherwise all computations can be
performed inside the fast memory, with no communication, except for reading the input
once.

In some cases, the computation graph G does not fit this analysis: it may not be
regular, it may have vertices of unbounded degree, or its edge expansion may be hard
to analyze. In such cases, we may consider some subgraph G′ of G instead to obtain a
lower bound on the I/O-complexity :

LEMMA 3.2. Let G = (V,E) be a computation graph of an algorithm Alg. Let G′ =

(V ′, E′) be a subgraph of G, i.e., V ′ ⊆ V and E′ ⊆ E. If G′ is d-regular and α = |V ′|
|V | ,

then, for sufficiently large |V ′|, the I/O-complexity of Alg is

IO ≥ α · |V |
s
·M

where s is chosen so that hs(G′) · αs ≥ 3M .

The correctness of this lemma follows from Equations (4) and (5), and from the fact
that at least an α/2 fraction of the segments have at least α · s of their vertices in G′

(otherwise V ′ < α
2 · V/s · s+ (1− α

2 ) · V/s · α2 s < αV ).

10The direction of the edges does not matter much for the expansion-bandwidth argument: treating all edges
as undirected changes the I/O-complexity estimate by a factor of 2 at most. For simplicity, we will treat G as
undirected.
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4. EXPANSION PROPERTIES OF STRASSEN’S ALGORITHM
Recall Strassen’s algorithm for matrix multiplication (see Algorithm 1 in Appendix A)
and consider its computation graph (see Figure 2). Let Hi be the computation graph of
Strassen’s algorithm for recursion of depth i, hence Hlgn corresponds to the computa-
tion for input matrices of size n× n. Hlgn has the following structure:

— Encode A: generate weighted sums of elements of A (this corresponds to the left
factors of lines 5-11 of the algorithm).

— Similarly encode B (this corresponds to the right factors of lines 5-11 of the algo-
rithm).

— Then multiply the encodings of A and B element-wise (this corresponds to line 2 of
the algorithm).

— Finally, decode C, by taking weighted sums of the products (this corresponds to lines
12-15 of the algorithm).

    0 

Fig. 2. The computation graph of Strassen’s algorithm (See Algorithm 1 in Appendix).
Top left: Dec1C. Top right: H1. Bottom left: DeclgnC. Bottom right: Hlgn.

COMMENT 4.1. Dec1C is presented, for simplicity, with vertices of in-degree larger
than two (but constant). A vertex of degree larger than two, in fact, represents a full
binary (not necessarily balanced) tree. Note that replacing these high in-degree vertices
with trees changes the edge expansion of the graph by a constant factor at most (as this
graph is of constant size, and connected). Moreover, there is no change in the number of
input and output vertices. Therefore the arguments in the proof of Lemma 4.9 still hold.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January 20XX.



A:12 Ballard, Demmel, Holtz, and Schwartz

4.1. The computation graph for n-by-n matrices
Assume w.l.o.g. that n is an integer power of 2. Denote by EnclgnA the part of Hlgn that
corresponds to the encoding of matrix A. Similarly, EnclgnB, and DeclgnC correspond
to the parts of Hlgn that compute the encoding of B and the decoding of C, respectively.

4.1.1. A top-down construction of the computation graph. We next construct the computation
graph Hi+1 by constructing Deci+1C (from DeciC and Dec1C) and similarly construct-
ing Enci+1A and Enci+1B, then composing the three parts together.

— Replicate Dec1C 7i times.
— Replicate DeciC four times.
— Identify the 4 · 7i output vertices of the copies of Dec1C with the 4 · 7i input vertices

of the copies of DeciC:
— Recall that each Dec1C has four output vertices.
— The set of each first output vertex of the 7i Dec1C graphs is identified with the set

of 7i input vertices of the first copy of DeciC.
— The set of each second output vertex of the 7i Dec1C graphs is identified with the

set of 7i input vertices of the second copy of DeciC. And so on.
— We make sure that the jth input vertex of a copy of DeciC is identified with an

output vertex of the jth copy of Dec1C.
— We similarly obtain Enci+1A from EnciA and Enc1A,
— and Enci+1B from EnciB and Enc1B.
— For every i, Hi is obtained by connecting edges from the jth output vertices of EnciA

and EnciB to the jth input vertex of DeciC.

This completes the construction. Let us note some properties of these graphs.
The graphDec1C has no vertices which are both input and output. As all out-degrees

are at most 4 and all in degree are at most 2 (Recall Comment 4.1) we have:

FACT 4.2. All vertices of DeclgnC are of degree at most 6.

However, Enc1A and Enc1B have vertices which are both input and output (e.g.,
A11), therefore EnclgnA and EnclgnB have vertices of out-degree Θ(lg n). All in-degrees
are at most 2, as an arithmetic operation has at most two inputs.

AsHlgn contains vertices of large degrees, it is easier to considerDeclgnC: it contains
only vertices of constant bounded degree, yet at least one third of the vertices of Hlgn

are in it.

4.1.2. Combinatorial Estimation of the Expansion. Let Gk = (V,E) be DeckC, and let S ⊆
V, |S| ≤ |V |/2. We next show that |E(S, V \S)| ≥ c·d·|S|·

(
4
7

)k, where c is some universal
constant, and d is the constant degree of DeckC (after adding loops to make it regular).

Let li be the ith level of vertices of Gk, so 4k = |l1| < |l2| < · · · < |li| = 4k−i+17i−1 <

· · · < |lk+1| = 7k. Let Si ≡ S ∩ li. Let σ = |S|
|V | be the fractional size of S and σi = |Si|

|li| be
the fractional size of S at level i. Due to averaging, we observe the following:

FACT 4.3. There exist i and i′ such that σi ≤ σ ≤ σi′ .
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FACT 4.4.

|V | =

k+1∑
i=1

|li| =
k∑
i=0

|lk+1| ·
(

4

7

)i
= |lk+1| ·

(
1−

(
4

7

)k+1
)
· 7

3

=

(
7

4

)k
· |l1| ·

(
1−

(
4

7

)k+1
)
· 7

3

so 3
7 ≤

|lk+1|
|V | ≤

3
7 ·

1

1−( 4
7 )

k+1 , and 3
7 ·
(
4
7

)k ≤ |l1||V | ≤ 3
7 ·
(
4
7

)k · 1

1−( 4
7 )

k+1 .

CLAIM 4.5. Let δi ≡ σi+1− σi. Then |E(S, V \S)∩E(li, li+1)| ≥ c1 · d · |δi| · |li|, where
c1 is a constant which depends on G1.

PROOF. Let G′ be a G1 component connecting li with li+1 (so it has four vertices
in li and seven in li+1). G′ has no edges in E(S, V \ S) if all or none of its ver-
tices are in S. Otherwise, as G′ is connected, it contributes at least one edge to
E(S, V \ S). The number of such G1 components with all their vertices in S is at most
min

{
σi·|li|

4 , σi+1·|li+1|
7

}
= min{σi, σi+1} · |li|4 . Similarly, the number of such G1 compo-

nents with none of their vertices in S is at most min{1 − σi, 1 − σi+1} · |li|4 . Therefore,
there are at least |σi − σi+1| · |li|4 G1 components with at least one vertex in S and one
vertex that is not. The claim follows with c1 = 1

4d .

CLAIM 4.6 (HOMOGENEITY BETWEEN LEVELS). If there exists i so that |σ−σi|
σ ≥ 1

10 ,
then

|E(S, V \ S)| ≥ c2 · d · |S| ·
(

4

7

)k
where c2 is a constant which depends on G1.

PROOF. Assume that there exists j so that |σ−σj |
σ ≥ 1

10 . By Claim 4.5, we have

|E(S, V \ S)| ≥
∑
i∈[k]

|E(S, V \ S) ∩ E(li, li+1)|

≥
∑
i∈[k]

c1 · d · |δi| · |li|

≥ c1 · d · |l1|
∑
i∈[k]

|δi|

≥ c1 · d · |l1| ·
(

max
i∈[k+1]

σi − min
i∈[k+1]

σi

)
.

By the initial assumption, there exists j so that |σ−σj |
σ ≥ 1

10 , therefore maxi σi −
mini σi ≥ σ

10 , then

|E(S, V \ S)| ≥ c1 · d · |l1| ·
σ

10
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By Fact 4.4, |l1| ≥ 3
7 ·
(
4
7

)k · |V |,
≥ c1 · d ·

3

7
·
(

4

7

)k
· |V | · σ

10

As |S| = σ · |V |,

≥ c2 · d · |S| ·
(

4

7

)k
for any c2 ≤ 1

10 ·
3
7 · c1.

Let Tk correspond to the recursive construction ofGk in the following way (see Figure
3): Tk is a tree of height k + 1, where each internal node has four children. The root
r of Tk corresponds to lk+1 (the largest level of Gk). The four children of r correspond
to the largest levels of the four graphs that one can obtain by removing the level of
vertices lk+1 from Gk. And so on. For every node u of Tk, denote by Vu the set of vertices
in Gk corresponding to u, so if u is at level i of Tk then Vu ⊆ li. One can think of Tk
as a quadtree partitioning of matrix C into blocks, where Vu is the largest level of the
decoding subgraph of the C sub-block corresponding to u. Therefore |Vr| = 7k where r
is the root of Tk, |Vu| = 7k−1 for each node u that is a child of r; and in general we have
4i tree nodes u corresponding to a set of size |Vu| = 7k−i+1. Each leaf l corresponds to a
set of size 1.

l1

lk

lk+1

t1

tk

tk+1

Fig. 3. The graph Gk and its corresponding tree Tk.

For a tree node u, let us define ρu = |S∩Vu|
|Vu| to be the fraction of S nodes in Vu, and

δu = |ρu−ρp(u)|, where p(u) is the parent of u (for the root r we let p(r) = r). We let ti be
the ith level of Tk, counting from the bottom, so tk+1 is the root and t1 are the leaves.

FACT 4.7. As Vr = lk+1 we have ρr = σk+1. For a tree leaf u ∈ t1, we have |Vu| = 1.
Therefore ρu ∈ {0, 1}. The number of vertices u in t1 with ρu = 1 is σ1 · |l1|.
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CLAIM 4.8. Let u0 be an internal tree node, and let u1, u2, u3, u4 be its four children.
Then ∑

i

|E(S, V \ S) ∩ E(Vui
, Vu0

)| ≥ c1 · d ·
∑
i

|ρui
− ρu0

| · |Vui
|

where c1 is a constant that depends on G1.

PROOF. The proof follows that of Claim 4.5. Let G′ be a G1 component connecting
Vu0

with
⋃
i∈[4] Vui

(so it has seven vertices in Vu0
and one in each of Vu1

,Vu2
,Vu3

,Vu4
).

G′ has no edges in E(S, V \ S) if all or none of its vertices are in S. Otherwise, as G′ is
connected, it contributes at least one edge to E(S, V \S). The number of G1 components
with all their vertices in S is at most min{ρu0

, ρu1
, ρu2

, ρu3
, ρu4
} · |Vu1

|. Therefore, there
are at least maxi∈[4]{|ρu0

−ρui
|} · |Vu1

| ≥ 1
4 ·
∑
i∈[4] |ρui

−ρu0
| · |Vui

| G1 components with
at least one vertex in S and one vertex that is not. The claim follows with c1 = 1

4d .

4.2. Proof of Theorem 1.1
Given the results of the previous section, we first state and prove our main lemma on
the edge expansion of the decoding graph of Strassen’s CDAG:

LEMMA 4.9. (MAIN LEMMA) The edge expansion of DeckC is

h(DeckC) = Ω

((
4

7

)k)
.

PROOF. Consider a subset S of the vertices of the decoding graph. Recall that Gk =
DeckC is a layered graph (with layers corresponding to recursion steps), so all edges
(excluding loops) connect between consecutive levels of vertices. By Claim 4.6, each
level of Gk contains about the same fraction of S vertices, or else we have many edges
leaving S. By Fact 4.7, the lowest level is composed of distinct parts that cannot have
homogeneity (of the fraction of their S vertices), otherwise many edges leave S.

Let Tk and Vu be defined as in the previous section. We will show that the homogene-
ity between levels, combined with the heterogeneity of the lowest level, guarantees
that there are many edges leaving S.

We have

|E(S, V \ S)| =
∑
u∈Tk

|E(S, V \ S) ∩ E(Vu, Vp(u))|

By Claim 4.8, this is

≥
∑
u∈Tk

c1 · d · |ρu − ρp(u)| · |Vu|

= c1 · d ·
∑
i∈[k]

∑
u∈ti

|ρu − ρp(u)| · 7i−1

≥ c1 · d ·
∑
i∈[k]

∑
u∈ti

|ρu − ρp(u)| · 4i−1
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As each internal node has four children, this is

= c1 · d ·
∑
v∈t1

∑
u∈v∼r

|ρu − ρp(u)|

where v ∼ r is the path from v to the root r. By the triangle inequality for the func-
tion | · |

≥ c1 · d ·
∑
v∈t1

|ρu − ρr|

By Fact 4.7,

≥ c1 · d · |l1| · ((1− σ1) · ρr + σ1 · (1− ρr))

By Claim 4.6, w.l.o.g., |σi − σ|/σ ≤ 1
10 (otherwise |E(S, V \ S)| ≥ c2 · d · |S| ·

(
4
7

)k), so
9
10σ ≤ σi ≤

11
20 . As σ ≤ 1

2 and ρr = σk+1,

≥ 81

100
· c1 · d · |l1| · σ

and by Fact 4.4,

≥ c3 · d · |S| ·
(

4

7

)k
for any c3 ≤ 3

7 ·
81
100 · c1.

Thus, since d is constant (Fact 4.2), we have |E(S,V \S)|
|S| = Ω

((
4
7

)k), where the hidden
constant is c4 = d ·min{c2, c3}.

We now prove the Main Theorem.

PROOF OF THEOREM 1.1. Let k = lg
√
M + c5 where c5 is a constant to be deter-

mined, and assume k divides lg n evenly. Note that it is sufficient to prove the result
for an infinite number of n’s, but the smallest n for which the proof holds is n = 2c5

√
M

(so that k = lg n). This assumption implies that DeclgnC is composed of edge-disjoint
copies of DeckC, and we can apply Lemma 2.1 with G = DeclgnC, G′ = DeckC, and
s = |V (G′)|/2. Since d and d′ are the same, we have

hs(DeclgnC) ≥ h(DeckC)

and by Lemma 4.9 this implies

hs(DeclgnC) ≥ c4 ·
(

4

7

)k
.

Note that 7k/2 ≤ s ≤ 2 · 7k.
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We now apply Lemma 3.2 with G as the entire CDAG of Strassen’s algorithm of
matrix dimension n and G′ = DeclgnC. Here α = 1

3 and

hs(DeclgnC) · αs ≥ c2
6
· 4c5 ·M ≥ 3M

for c5 ≥ lg
√

18/c4, so

IO ≥ α · |V |
s
·M = Ω

((
n√
M

)lg 7

·M

)
.

The above inequality holds for M ≤ c6 · n2, where c6 = 18/c4 < 1. For c6 · n2 ≤M ≤ n2,
note that

IO ≥ n2 = Ω

((
n√
M

)lg 7

·M

)
as one has to read 2n2 words of input data and at most n2 of them can be in the fast
memory at the start of the computation.

Next we prove the corollary for the parallel case.

PROOF OF COROLLARY 1.2. In the parallel case, we follow the reduction approach
of [Irony et al. 2004] and consider the busiest processor. Due to averaging, it must do
at least (1/p)th of the work. We apply the same partitioning argument as in the proof of
Theorem 1.1 to that processor’s subset of computation. However, in order for the proof
to work we must require M ≤ c n2

p2/ lg 7 for some constant c (rather than M ≤ cn2 in the
sequential case).

5. EXTENSIONS
We now discuss extensions of our approach and the applicability to other algorithms,
starting with other fast matrix multiplication algorithms.

5.1. Strassen-like Algorithms
A Strassen-like algorithm has a recursive structure that utilizes a base algorithm:
multiplying two n0-by-n0 matrices using m0 scalar multiplications, where n0 and m0

are constants. Given two matrices of size n-by-n, it splits them into n20 blocks (each of
size n

n0
-by- nn0

), and works block-wise, according to the base algorithm. Additions (and
subtractions) in the base algorithm are interpreted as additions (and subtractions) of
blocks. These are performed element-wise. Multiplications in the base algorithm are
interpreted as multiplications of blocks. These are performed by recursively calling the
algorithm. The arithmetic count of the algorithm is then T (n) = m0 · T

(
n
n0

)
+ O(n2),

so T (n) = Θ(nω0) where ω0 = logn0
m0.

This is the structure of all the fast matrix multiplication algorithms that were ob-
tained since Strassen’s [Pan 1980; Bini 1980; Schönhage 1981; Romani 1982; Cop-
persmith and Winograd 1982; Strassen 1987; Coppersmith and Winograd 1987], (see
[Bűrgisser et al. 1997] for discussion of these algorithms), as well as [Cohn et al. 2005],
where the base algorithm utilizes a novel group-theoretic approach, and the recent
breakthroughs [Stothers 2010; Vassilevska-Williams 2011].11

11 In fact, any arithmetic circuit for multiplying fixed-size matrices can be converted into a bilinear circuit of
the same or smaller size [Raz 2003]. This can be used to convert any O(nω0 ) matrix multiplication algorithm
into a bilinear matrix multiplication algorithm of running time O(nω0+ε) for any ε > 0. Furthermore,
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5.1.1. A critical technical assumption. For our technique to work, we further demand that
the Dec1C part of the computation graph is a connected graph, in order to be Strassen-
like (this is assumed in the proof of Claim 4.5). Thus the Strassen-like class includes
Winograd’s variant of Strassen’s algorithm [Winograd 1971], which uses 15 additions
rather than 18. It also contains the algorithm of Hopcroft and Kerr [Hopcroft and Kerr
1971] and some variants of Bini’s algorithm [Bini 1980; Bini et al. 1979] (see [Ballard
et al. 2012c] for further discussion12). The Strassen-like class does not contain the clas-
sical algorithm, where Dec1C is composed of four disconnected graphs (corresponding
to the four outputs). The assumption of connectivity of Dec1C is not required by the
geometric embedding approaches [Irony et al. 2004; Ballard et al. 2011d; Ballard et al.
2012a], that is applied to classical matrix multiplication, nor by the dominator ap-
proach [Hong and Kung 1981]. A disconnected Dec1C graph can be handled when ap-
plying our expansion approach to some cases of fast matrix multiplication algorithms,
at the cost of obtaining weaker lower bounds [Ballard et al. 2012c].

5.1.2. The communication costs of Strassen-like algorithms. To prove Theorem 1.4, which
generalizes the I/O-complexity lower bound of Strassen’s algorithm (Theorem 1.1) to all
Strassen-like algorithms, we note the following: the entire proof of Theorem 1.1, and
in particular, the computations in the proof of Lemma 4.9, hold for any Strassen-like
algorithm, where we plug in n20 andm0, instead of 4 and 7. For bounding the asymptotic
I/O-complexity , we do not care about the number of internal vertices ofDec1C; we need
only to know that Dec1C is connected (this critical technical assumption is used in the
proof of Claim 4.5), and to know the sizes n0 and m0. The only nontrivial adjustment is
to show the equivalent of Fact 4.2: that the graph DeclognC is of bounded degree. This
is given in the following claim:

CLAIM 5.1. The DeclognC graph of any Strassen-like algorithm is of degree
bounded by a constant.

PROOF. If the set of input vertices of Dec1C, and the set of its output vertices are
disjoint, then DeclognC is of constant bounded degree (its maximal degree is at most
twice the largest degree of Dec1C).

Assume (towards contradiction) that the base graph Dec1C has an input vertex
which is also an output vertex. An output vertex represents the inner product of two
n0-long vectors, i.e., the corresponding row-vector of A and column vector of B. The
corresponding bilinear polynomial is irreducible. This is a contradiction, since an in-
put vertex represents the multiplication of a (weighted) sum of elements of A with a
(weighted) sum of elements of B.

5.2. Multiplying Rectangular Matrices
Many fast algorithms have been devised for multiplication of rectangular matrices (see
[Ballard et al. 2012c] for detailed list). A fast algorithm for multiplyingm0×n0 and n0×
p0 matrices in q < m0n0p0 scalar multiplications can be applied recursively to multiply
mt

0 × nt0 and nt0 × pt0 matrices in O(qt) flops. For such algorithms, the CDAG has very
similar structure to Strassen and Strassen-like algorithms for square multiplication in
that it is composed of two encoding graphs and one decoding graph. Assuming that the
decoding graph is connected, the proofs of Theorem 1.1 and Lemma 4.9 apply where we
plug inm0p0 and q for 4 and 7. In this case, we obtain a result analogous to Theorem 1.1
which states that the I/O-complexity of such an algorithm is given by

the algorithm can be made numerically stable while preserving this form [Demmel, Dumitriu, Holtz, and
Kleinberg, 2007].
12In particular, note that the observation that some variants of Bini’s algorithm have disconnected decoding
graphs falsifies the conjecture made in the short version of this paper [Ballard et al. 2011d].
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Ω

(
qt

M logm0p0
q−1

)
.

If the output matrix is the largest of the three matrices (i.e., n0 < m0 and n0 < p0),
then this lower bound is attained by the natural recursive algorithm and is therefore
tight. The lower bound extends to the parallel case as well, analogous to Corollary 1.2,
and can be attained using the algorithmic technique of [Ballard et al. 2012b].

However, in the case that the decoding graph is not connected, the proof does not
apply, and in the case the output matrix is not the largest, the lower bound is not tight.
In order to handle these technical challenges, we can employ modifications of the proof
technique: we can deal with the decoding graph being disconnected by considering
individual connected components, or we can consider one of the two encoding graphs,
which may contain vertices of high degree. In either case, the proofs must be adapted,
and we obtain slightly weaker results. We detail these approaches in [Ballard et al.
2012c] and discuss the application to rectangular matrix multiplication algorithms of
[Bini et al. 1979] and [Hopcroft and Kerr 1971].

5.3. Memory-independent lower bounds
Some parallel algorithms require very little (up to a constant factor) extra memory
beyond what is necessary to keep the input and output. These are sometimes called
linear space algorithms. One class of such algorithms are the “2D” algorithms for clas-
sical matrix multiplication, that use a two-dimensional grid of processors. Here we
allow M = Θ

(
n2

p

)
local memory use (recall that p is the number of processors, and n

the dimension of the matrices), thus no more than a constant factor of replication of
the input matrices is allowed (see [Cannon 1969] for an example of a 2D algorithm). In
this case, the classical parallel lower bound reduces to Ω

(
n2
√
p

)
[Irony et al. 2004], and

this bound is attainable. Similarly, in the case of Strassen-like matrix multiplication,
assuming M = Θ

(
n2

p

)
, Corollary 1.2 reduces to Ω

(
n2

p2/ω0

)
.

However, as pointed out in [Irony et al. 2004], since M appears in the denominator,
the lower bounds indicate that using more local memory in the parallel case can reduce
communication costs. Indeed, so-called “3D” algorithms for classical matrix multiplica-
tion (see [Dekel et al. 1981; Aggarwal et al. 1990; Agarwal et al. 1995]) reduce the com-
munication cost by a factor of p1/6 using a factor of p1/3 more local memory, compared to
2D algorithms. Depending on the problem size and the physical local memory size, this
extra memory may not be available, in which case 3D algorithms cannot be used. It is
possible to interpolate between 2D and 3D algorithms with a parametrized algorithm
which trades off memory for communication and obtain a communication optimal im-
plementation for classical matrix multiplication, for local memory size M = Θ

(
c · n

2

p

)
for any 1 ≤ c ≤ p 1

3 [McColl and Tiskin 1999; Solomonik and Demmel 2011].
The lower bound arguments of [Irony et al. 2004; Ballard et al. 2011c] for classi-

cal algorithms and those proved in this paper for Strassen-like algorithms can be ex-
tended to prove memory-independent lower bounds [Ballard et al. 2012a]. As stated in
Theorem 1.3, under certain assumptions, any parallel algorithm for classical matrix
multiplication must move Ω

(
n2

p2/3

)
words, and any parallel algorithm for Strassen-like

matrix multiplication must move Ω
(

n2

p2/ω0

)
words.

These bounds dominate the memory-dependent bounds once the local memory size
is sufficiently large. In particular, the memory-dependent and memory independent
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Table I. Communication-cost lower bounds for parallel matrix multiplication and perfect
strong scaling ranges. n is matrix dimension, M is local memory size, p is the number of
processors, ω0 is the exponent of the arithmetic count.

Classical Strassen-like
Memory-dependent

Ω
(

n3

p
√
M

)
Ω
(

nω0

pMω0/2−1

)
lower bound

Memory-independent
Ω
(

n2

p2/3

)
Ω
(

n2

p2/ω0

)
lower bound

Perfect strong
p = O

(
n3

M3/2

)
p = O

(
nω0

Mω0/2

)
scaling range

Attaining algorithm [Solomonik and Demmel 2011] [Ballard et al. 2012b]

bounds coincide when M = Θ
(

n2

p2/ω0

)
. Further, the memory-independent bounds imply

that there are strict limits on the perfect strong scaling range of matrix multiplication
algorithms (both classical and Strassen-like). That is, within the perfect strong-scaling
range, for a fixed problem size, by doubling the number of processors (and therefore
doubling the total memory available) both the computational and communication costs
are halved. Beyond the perfect strong-scaling range, the reduction in computational
cost is linear, but the reduction in communication cost is sub-linear. These results are
summarized in Table I.

The recent parallel algorithm in [Ballard et al. 2012b] attains the memory-
dependent bound within the perfect strong-scaling range and attains the memory-
independent bound outside the range and is therefore communication-optimal in all
cases.

5.4. Other Linear Algebra Problems
Fast matrix multiplication algorithms are basic building blocks in many fast algo-
rithms in linear algebra, such as algorithms for LU, QR, and eigenvalue and singular
value decompositions [Demmel et al. 2007]. Therefore, I/O-complexity lower bounds
for these algorithms can be derived from our lower bounds for fast matrix multipli-
cation algorithms [Ballard et al. 2012d]. For example, a lower bound on LU (or QR,
etc.) follows when the fast matrix multiplication algorithm is called by the LU algo-
rithm on sufficiently large submatrices. This is the case in the algorithms of [Demmel
et al. 2007], and we can then deduce matching lower and upper bounds [Ballard et al.
2012d].

6. CONCLUSIONS AND OPEN PROBLEMS
We obtained a tight lower bound for the I/O-complexity of Strassen’s and Strassen-like
fast matrix multiplication algorithms. These bounds are optimal for the sequential
model with two memory levels and with memory hierarchy. The lower bounds extend
to the parallel model and other models. Recently these bounds were attained by new
parallel algorithms [Ballard et al. 2012b].

6.1. Recursive Implementations
In some cases, the simplest recursive implementation of an algorithm turns out to be
communication-optimal in the sequential model (e.g., in the cases of matrix multiplica-
tion [Frigo et al. 1999] and Cholesky decomposition [Ahmed and Pingali 2000; Ballard
et al. 2010], but not in the case of LU decomposition: the recursive algorithm of [Toledo
1997] is bandwidth optimal but not latency optimal).

In the context of parallel computation, recursive algorithms can again be used for
communication-efficiency. See [Tiskin 2002] for LU decomposition and [Tiskin 2007]
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for QR decomposition, in which cases a tradeoff is observed between the bandwidth
and latency costs of the algorithm.

This leads to the question: when is the communication-optimality of an algorithm
determined by the expansion properties of the corresponding computation graphs? In
this work we showed that such is the case for Strassen-like fast matrix multiplication
algorithms.

6.2. Other Models
It is of great interest to construct new models general enough to capture the rich and
evolving design space of current and predicted future computers. Such models can be
homogeneous, consisting of many layers, where the components of each layer are the
same (e.g., a supercomputer with many identical multi-core chips on a board, many
identical boards in a rack, many identical racks, and many identical levels of associ-
ated memory hierarchy); or heterogeneous, with components with different properties
residing on the same level (e.g., CPUs alongside GPUs, where the latter can do some
computations very quickly, but are much slower to communicate with).

Some experience has been acquired with such systems (see the MAGMA project
[Baboulin et al. 2012], and also [Volkov and Demmel 2008] for using GPU assisted
linear algebra computation ). A first step in analyzing such systems has been recently
introduced in [Ballard et al. 2011b], where the authors modeled heterogeneous shared
memory architectures, such as mixed GPU/CPU architecture, and obtained tight lower
and upper bounds for classical matrix multiplication.

Note that we can similarly generalize Corollaries 1.2 and 1.5 to other models, such
as the heterogeneous model and shared memory model. The reduction is achieved by
observing the communication of a single processor.

However, there is currently no systematic theoretic way of obtaining upper and lower
bounds for arbitrary hardware models. Expanding such results to other architectures
and algorithmic techniques is a challenging goal. For example, recursive algorithms
tend to be cache oblivious and communication optimal for the sequential hierarchy
model. Finding an equivalent technique that would work for an arbitrary architecture
is a fundamental open problem.
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A. STRASSEN’S FAST MATRIX MULTIPLICATION ALGORITHM
Strassen’s original algorithm follows [Strassen 1969]. See [Winograd 1971] for Wino-
grad’s variant, which reduces the number of additions. For actual uses of Strassen’s
algorithm, see [Douglas et al. 1994; Huss-Lederman et al. 1996; Desprez and Suter
2004].

Algorithm 1 Matrix Multiplication: Strassen’s Algorithm
Input: Two n× n matrices, A and B.

1: if n = 1 then
2: C11 = A11 ·B11

3: else
4: {Decompose A into four equal square blocks A =

(
A11 A12

A21 A22

)
and the same for B.}

5: M1 = (A11 +A22) · (B11 +B22)
6: M2 = (A21 +A22) ·B11

7: M3 = A11 · (B12 −B22)
8: M4 = A22 · (B21 −B11)
9: M5 = (A11 +A12) ·B22

10: M6 = (A21 −A11) · (B11 +B12)
11: M7 = (A12 −A22) · (B21 +B22)
12: C11 = M1 +M4 −M5 +M7

13: C12 = M3 +M5

14: C21 = M2 +M4

15: C22 = M1 −M2 +M3 +M6

16: end if
17: return C
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